D.11 1.99 1.99 660.088 22.3:131 D.11 1.99

Sergiy Sirichenko, Pinnacle 21 July 2, 2020

3452 858

SUPPQUAL DATASETS: GOOD BAD AND UGLY

106:891 721320 633:046 370:909 957.650 5.932

611913

PRESENTER – SERGIY SIRICHENKO

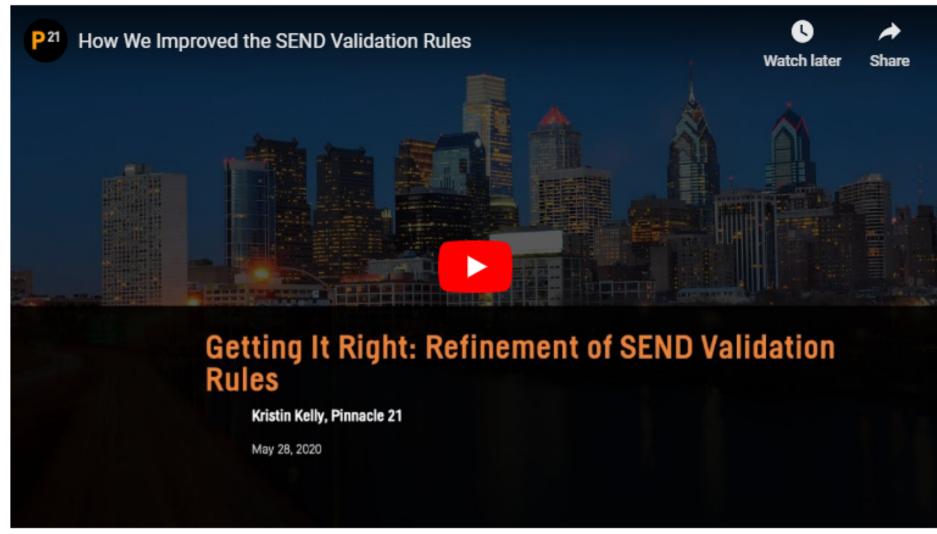
Co-founder of OpenCDISC SME on FDA JumpStart, coreDF, and eDATA projects

User advocate

WWW.PINNACLE21.COM/BLOG

Blog	Pinnacl	e 21 🛛 🗙	+	
\rightarrow	G (pinnacle21.com	/blog	
				PINNÁCLE ²¹

Blog


Mapping Considerations for Screen Failure, Not Assigned, and Not Treated Subjects

June 18, 2020

Our recent webinar Confusing Validation Rules Explained sparked lots of follow-up questions from you. We are addressing those questions in a series of posts. In this edition, we will clarify the best practices when mapping data for screen failure, not assigned, and not treated subjects. We will also help by describing the most effective ways to respond to these situations. Read more

How We Improved the SEND Validation Rules

June 11, 2020

P²¹

←

PRODUCTS -SERVICES - COMMUNITY -

About Us 👻 🔍 🔍

Q 🖈 🤤 🧧

Recent Posts

Mapping Considerations for Screen Failure, Not Assigned, and Not Treated Subjects

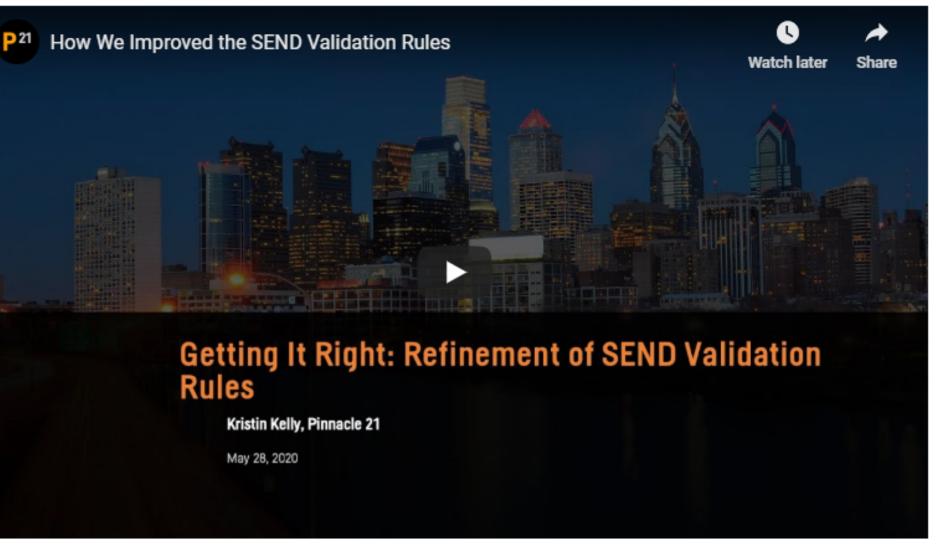
How We Improved the SEND Validation Rules

How to Implement the EPOCH Variable

Confusing Validation Rules Explained

PMDA's New Validation Rules Explained

Tags


ADaM Awards Continuous Compliance DataFit Engine Events FDA Legacy OpenCDISC PMDA Press SDSP SDTM SEND Standards Management Validation

How We Improved the SEND Vali ×	Pinnacle 21 - YouTube	× +						
← → C								
		PINNÁCLE ²¹	PRODUCTS					

Blog / How We Improved the SEND Validation Rules

How We Improved the SEND Validation Rules

View Edit June 11, 2020

Recording

For years, the validation rules for nonclinical data were just an extension of published SDTM rules. However, through active collaboration of Pinnacle 21, FDA and the industry over the past year, the SEND rules have been refined. We have modified many of the existing rules, removed some and added others.

On May 28th, Pinnacle 21 hosted a webinar in which Kristin Kelly discussed the changes that have been made to get the rules right for SEND. Learn more by browsing the webinar resources.

Webinar Resources

- Download the slide deck
- Watch the video above
- Read the Q&A below

Answers to Your Questions

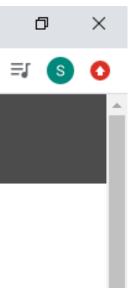
1. Does the duplicate check refer to dataset keys in define.xml? SD1117 does not currently check against the keys in the define.xml. It checks against a specific set of qualifier and timing variables with the exception of variables that can be sponsor-defined, such as --SPID, --REFID, etc.

SlidesQ&A

Recent Posts

Mapping Considerations for Screen Failure, Not Assigned, and Not Treated Subjects

How We Improved the SEND Validation Rules


How to Implement the EPOCH Variable

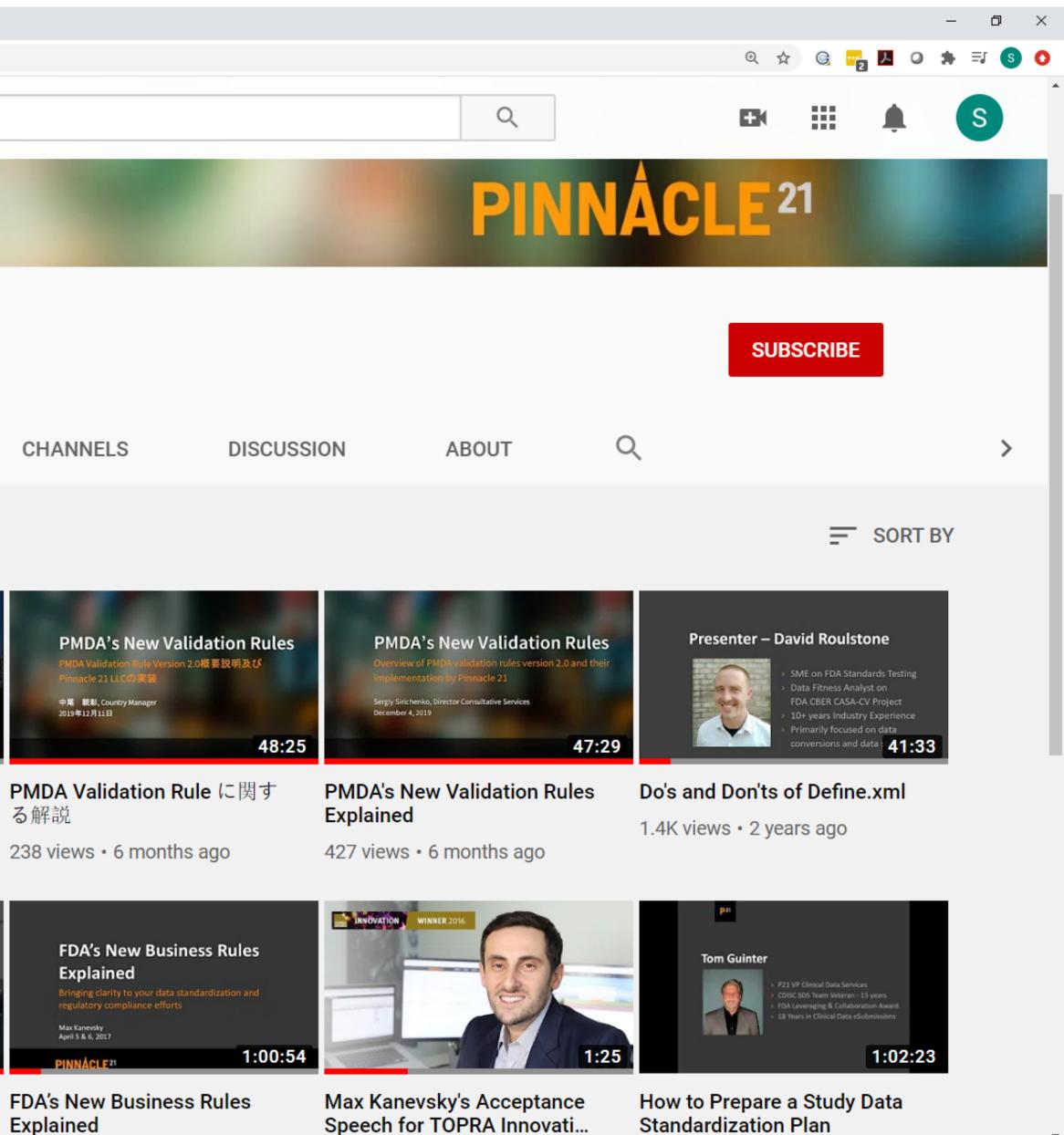
Confusing Validation Rules Explained

PMDA's New Validation Rules Explained

Tags

ADaM Awards Continuous Compliance DataFit Engine Events FDA Legacy OpenCDISC PMDA Press SDSP SDTM SEND Standards Management Validation Webinars White Papers

ବ 🖈 🤤 🙀 🖉 🌲


<u>WWW.YOUTUBE.COM/USER/PINNACLE21LLC/VIDEOS</u>

_						
E Blog Pinnad	cle 21 × Pi	nnacle 21 - YouTube	× +			
	YouTube	clez hic/videos	Searc	h		
h Home						
b Trending			Pinna 60 subsc	cle 21 ribers		
Subscriptions		HOME	VIDE	:0S	PLAYLISTS	CHAN
Library	Uploads	PLAY ALL				
	Rules	ng It Right: Refinement of SEND	Validation 39:13		a been frank 3 I	Pl PM Pin Pa 2019
	How We I Validation	mproved the SE Rules	IND	Confusing Explained	Validation Rules	PMDA る解説
	43 views •	1 week ago		768 views	• 1 month ago	238 vie
	Bringing effic compliance of Max Kanevsky / 0	2EO Alay / Director Customer Success			1:5	FI E> Brit reg Max April 9
	What's Ne	w in P21 Enter	prise	A bit of hu	mor from Mike @	FDA's N

3.4

A bit of humor from Mike @ P21 Live Philly 2017

Explained

Standardization Plan

INTRODUCTION Standardized representation of sponsor's non-SDTM variables

SUPPLEMENTAL QUALIFIERS

- Standardized representation of sponsor's non-SDTM variables (NSV)
- Intended to capture additional Qualifiers Other type of data should not be stored in SUPPQUAL
 - Separate observations
 - Subject Characteristics (SC) domain information
 - Interpretations
 - Information which required additional qualifiers like units
 - Timing information
 - Info about non-occurrence events
 - Comments

SUPPQUAL datasets allows merging non-standard variables to their parent domains

- QNAM Name (8 chars)
- QLABEL Label (40 chars)

SDTM+ structure

- CDISC team new proposal
 - Keep non-standard variables in their parent domains
 - Pros: simplifies review process
 - potential deviation from SDTM compliance

Cons: may encourage excessive use of non-standard variables with

SDTM NON-STANDARD VARIABLES

SDTM-IG "Appendix C2: Supplemental Qualifiers Name Codes"

QNAM	QLABEL	Applicable Domains
AESOSP	Other Medically Important SAE	AE
AETRTEM	Treatment Emergent Flag	AE
CLSIG	Clinically Significant	Findings
REAS	Reason	All general observation classes

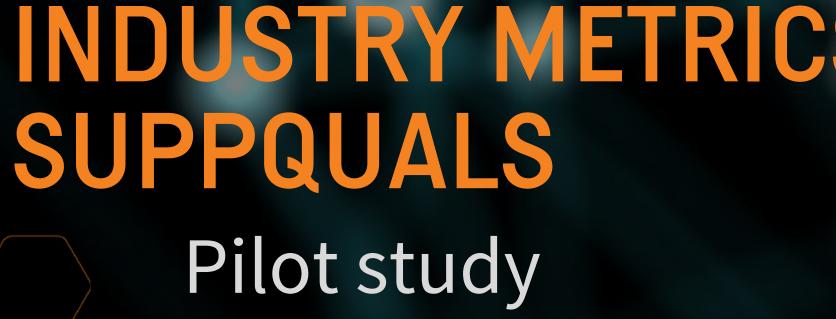
Therapeutic Area User Guides (TAUG)

- Pharmacogenomics/Genetics (PGx) TAUG example
- variables

Provisional standards waiting for adding new variables in SDTM Model SDTM NSV Registry' page on CDISC Wiki to keep track of non-standard

BEST PRACTICE ON CREATION OF NSV

- QNAM should start with <domain name> prefix
 - Iike names of standard variables in domains
 - For example, AETRTEM, AESOTH, EGCLSIG, etc.
 - Exceptions are sponsor-specific variables which are utilized across domains like VISIT or USUBJID.
- QNAM values cannot use variable names which already exist in SDTM model
- Utilization of SUPPQUAL variables should be consistent within a study and within a submission
- Users should try to use existing non-standard variables from CDISC documentation


INDUSTRY IMPLEMENTATION OF SUPPQUALS

- Driven by company and study-specific needs
- So far, there are no industry-wide metrics
 - To understand implementation of non-standard variables
 - To discover potential problems
 - To help developing CDISC SDTM standards

P21 pilot project

- To test methodology
- To test potential use of industry metrics for improving standard management processes including data validation

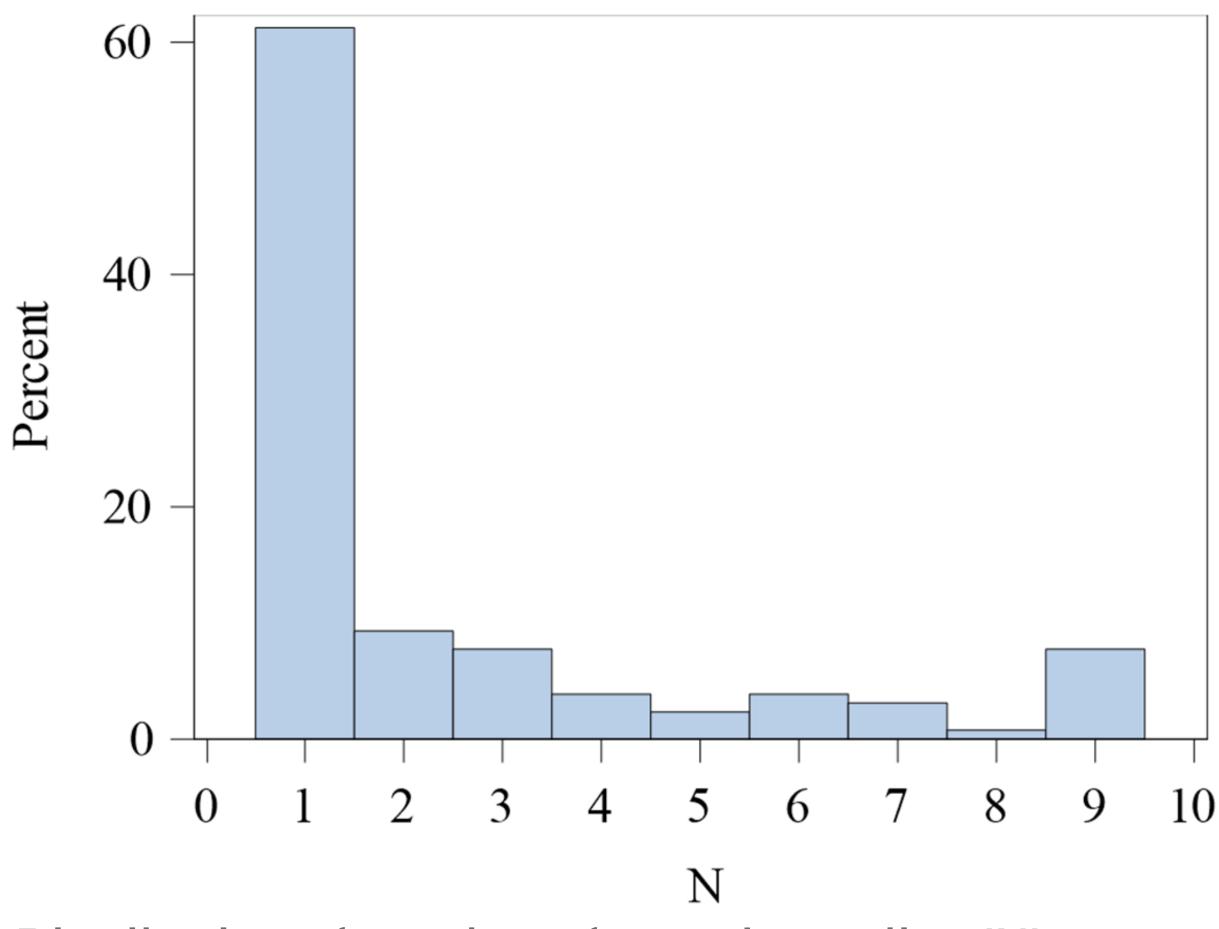
INDUSTRY METRICS: IMPLEMENTATION OF

METHODOLOGY

Metrics collected by Pinnacle 21 Enterprise Finalized studies

- Diversity of collected data
 - each therapeutic area
 - like Oncology, Antiviral and Dermatology
- Content of collected data
 - List of SUPPQUAL variables
 - De-identified sponsor and study IDs
 - Study phase, start date, version of SDTM
 - Indication collapsed into Oncology/Non-oncology

One sponsor may be represented by up to 3 studies within each phase and

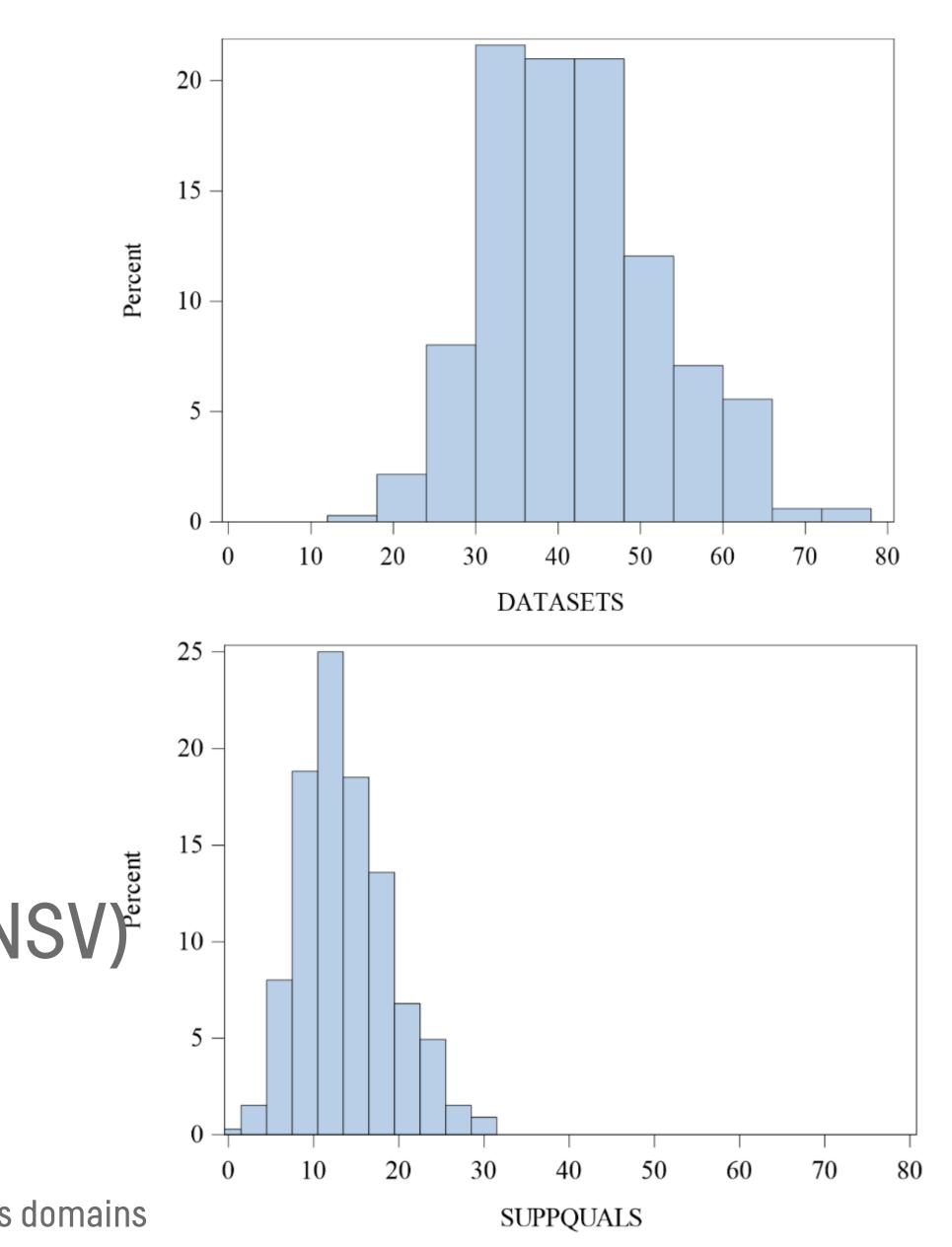

For example, it could be up to 3 phase II studies with different indications

- 124 sponsors
- ► 325 studies
 - 28% Oncology
 - 82% started in 2015 or later
 - 76% based on SDTM-IG 3.2
 - 19% based on SDTM-IG 3.1.3
- 27,023 QNAMs
 - Sponsor/Study/Dataset/QNAM

ANALYZED METRICS

Distribution of number of sample studies (N) per sponsor

STATISTICS


Datasets

- 14-75 per study
- Mean 41.5 (median 41)
 - Oncology 50
 - Non-oncology 38.2

SUPPQAUL datasets

- O-30 per study
- Mean 13.7 (median 13)
 - Oncology 17.5 (72%*)
 - Non-oncology 12.2 (67%)
- Non-standard variables (NSV)*
 - 1-618 per study
 - Mean 84 (median 65.5)
 - Mean of NSV per dataset 5.8

* Number of SUPPQUAL datasets / number of qualifies domains

MOST COMMON SUPPQUAL DATASETS (1-13)

Dataset	Number of studies with SUPPxx dataset	% (all studies)	% (non-oncology studies)	% (oncology studies)
SUPPAE	313	96.3	94.9	100.0
SUPPCM	298	91.7	89.4	97.8
SUPPDM	289	88.9	87.7	92.1
SUPPLB	251	77.2	74.2	85.4
SUPPDS	246	75.7	71.6	86.5
SUPPEG	222	68.3	64.4	78.7
SUPPMH	206	63.4	62.3	66.3
SUPPEX	205	63.1	56.8	79.8
SUPPDV	190	58.5	58.9	57.3
SUPPPR	141	43.4	33.1	70.8
SUPPPC	139	42.8	39.8	50.6
SUPPPE	120	36.9	39.8	29.2
SUPPVS	115	35.4	35.2	36.0

P21

MOST COMMON SUPPQUAL DATASETS (14-26)

Dataset	Number of studies with SUPPxx dataset	% (all studies)	% (non-oncology studies)	% (oncology studies)
SUPPEC	112	34.5	28.4	50.6
SUPPFA	106	32.6	29.2	41.6
SUPPQS	105	32.3	33.1	30.3
SUPPDA	86	26.5	27.5	23.6
SUPPSU	69	21.2	21.2	21.3
SUPPTU	68	20.9	0	<mark>76.4</mark>
SUPPIE	67	20.6	18.6	25.8
SUPPSV	61	18.8	20.8	13.5
SUPPCE	58	17.8	15.7	23.6
SUPPRS	48	14.8	1.7	<mark>49.4</mark>
SUPPHO	47	14.5	12.3	20.2
SUPPTR	46	14.2	0	<mark>51.7</mark>
SUPPSS	42	12.9	5.1	33.7

P21

15 MOST COMMON QNAM VALUES

QNAM	QLABEL	Number of studies	% (all studies)
AETRTEM	Treatment Emergent Flag	204	63.0
EGCLSIG	Clinically Significant	148	45.7
RACEOTH	Race, Other	129	39.8
DVTERM1	Protocol Deviation Term 1	98	30.2
LBCLSIG	Clinically Significant	64	19.8
PECLSIG	Clinical Significance	62	19.1
PRLLT	Lowest Level Term	61	18.8
PRHLGT	High Level Group Term	60	18.5
PRHLT	High Level Term	60	18.5
DVTERM2	Protocol Deviation Term 2	57	17.6
PRHLGTCD	High Level Group Term Code	55	17.0
PRHLTCD	High Level Term Code	55	17.0
PRPTCD	Preferred Term Code	53	16.4
PRLLTCD	Lowest Level Term Code	52	16.0
ATC3	ATC Level 3 Text	49	15.1

P21

MOST COMMON QNAM CONTINUED (16-30)

		1	1
CMDECOD1	Standardized Medication Name 1	45	13.9
ATC2	ATC Level 2 Text	44	13.6
CMATC2	ATC2	43	13.3
CMATC3	ATC3	42	13.0
PROTVER	Protocol Version	42	13.0
ATC1	ATC Level 1 Text	41	12.7
PRSOC	System Organ Class	41	12.7
RACE1	Race 1	41	12.7
CMATC1	ATC1	40	12.3
CMDECOD2	Standardized Medication Name 2	39	12.0
CMCLAS1	Medication Class 1	38	11.7
RACE2	Race 2	38	11.7
CMATC4	ATC4	37	11.4
COHORT	Cohort	37	11.4
CMCLAS2	Medication Class 2	36	11.1

P21

AE TREATMENT EMERGENT FLAG

- Requested by both FDA and PMDA Special validation rules
- Only 63% studies are compliant • Often AETRTEM Flag is populated only in ADaM
- Most automated review tools use SDTM data
 - Predicted standardized structure

CLINICALLY SIGNIFICANT

The second the most common SUPPQUAL 46% of all studies

Dataset	QNAM	QLABEL	N of studies with QNAM	% (all studies)	N of studies with Dataset	% (studies with Dataset)
SUPPEG	EGCLSIG	Clinically Significant	148	45.7	224	66.1
SUPPPE	PECLSIG	Clinically Significant	62	19.1	121	51.2
SUPPLB	LBCLSIG	Clinically Significant	64	19.8	253	25.3
SUPPVS	VSCLSIG	Clinically Significant	24	7.4	116	20.7

standard variables

However, information in this table is not very accurate Lack of CDISC conformance during the industry implementation of non-

EXAMPLES OF IMPLEMENTATIONS

QNAM	QLABEL
CLINSIG	CLINICALLY SIG
EGABN	Abnormal Clinica
EGCHG	Clinically Signific
EGCHGCS	ECG Changes C
EGCLIG	Clinical Significa
EGCLISG	Clinically Signific
EGCLISIG	Clinically Signific
EGCLSIG	Clinically Signific
EGCLSIG1	Abnormality 1 Cl
EGCLSIG1	Clinically Signific
EGCLSIG2	Clinically Signific
EGCS	ECG Clinically S

Increases actual use of Clinically Significant Flag in SUPPEG

- 50% of all studies
- 72% of studies with SUDDEC dataset

GNIFICANT
ally Significant
ant Chg. from Screen?
linically Significant
nce
ant
ant Result
ant
inically Significant
ant 1
ant 2
ignificant

LABELS FOR QNAM=EGCLSIG

QLABEL	N	QLABEL	N	QLABEL	
Abnormality Clinically Significant	1	Clinically Significant for EG	1	EG: If Abnormal, is it Clin Significant?	
Abnrml Interpretation Clin Significant?	1	Clinically Significant?	2	EGCLSIG	
CLINICAL SIGNIFICANCE	1	Clinically significance	1	If Abnormal and clin. signf., specify	
CLINICALLY SIGNIFICANT	1	Clinically significant	4	If Abnormal, Clinical Significance	
CLINICALLY SIGNIFICANT OR NOT	2	ECG Res. Abnormal Clinically Significant	1	If abnormal, clinically significant?	
CS/NCS	1	ECG Res. clinically significant	1	Interpretation Clinically Significant	
Clinical Significance	19	ECG Result Abnormal Clin. Significant	1	Is the Result Clinically Significant?	
Clinical Significance Flag	1	ECG Result clinically significant	2	SIGNIFICANCE OF ABNORMALITY	
Clinically Siginificant	1	ECG Test Result Clinically Significant	1	Was Abnormality Clinically Significant?	
Clinically Significant	94	EG Clinically Significant, Specify	1	Was Finding Clinically Significant?	
Clinically Significant Abnormality	1	EG Clinically significant?	1		

Correct implementation is only in 64% cases Questions about correct utilization of EGCLSIG • 'EG Clinically Significant, Specify' If Abnormal and clin. signf., specify'

NON-STANDARD IMPLEMENTATION

Interpretation' variable in SUPPEG

- Normal
- Abnormal, not clinically significant
- Abnormal, clinically significant

Mix of two potentially different types of information Normal/Abnormal Result Interpretation

- Clinically Significance Flag

variable to SDTM model

CDISC is planning to add --CLSIG (Clinically Significant)

WHO DRUG CODING

- WHO Drug dictionary has been added to FDA Data Standards Catalog
- However, no details or examples are provided
- No special SDTM variables for WHO Drug SDTM-IG suggests utilization of SUPPCM
- Huge diversity of implementation by the industry
 - 298 studies with SUPPCM
 - 1,023 different QNAM/QLABEL or 667 unique QNAM for WHO Drug ATC coding
 - 128 variations of QNAM values which include text 'ATCT'
 - 194 QNAM/QLABEL

EXAMPLES OF ATC1 VARIABLES

QNAM	QLABEL
ATC1	ATC Level 1 Text
ATC1_C	ATC 1 Class Code
ATC1_T	ATC 1 Class Text
ATC1C	ATC Level 1 Code
ATC1C_1	ATC1 Code 1
ATC1C_15	ATC1 Code 15
ATC1C03	ATC 1 Code
ATC1CD	ATC Level 1 Code
ATC1CODE	ATC 1 CODE
ATC1M10	ATC Level 1 Term for 10th Multiple Term
ATC1P	ATC Level 1 Term for Primary Term

QNAM	QLABEL
ATC1P15	WHO-DDE ATC1-MAIN GROUP-15
ATC1T	ATC Level 1 Text
ATC1T	ATC 1 NAME
ATC1TERM	ATC 1 NAME
ATC1TEXT	Level 1 Term
ATC1TM	ATC1 TERM
CMATC1	ATC 1 Term
CMATC115	ATC Level1 2015Jun
CMATC1TX	ATC 1 Text
ORATC1	Original ATC Level 1 Term
WHOATC1	WHO-DDE ATC1-MAIN GROUP

_
_

EXAMPLES OF QLABEL FOR QNAM='CMATC1'

QLABEL

ATC Chemical Subgroup 1st Level

ATC Classification Level 1

ATC Level 1

ATC Level 1 Code

ATC Level 1 Decode

ATC Level 1 Term

ATC Level 1 Text

ATC1 Name

QLABEL
ATC1 Term
ATC1 TERM
Comed ATC1 Term
Level 1 ATC
Medication Class 1
Medication/Therapyatc
WHO-DD, ATC Code, Level 1
WHODrug ATC1

D21 of SUPPQUAL datasets.

Widespread violation

Dataset	Ν	% (all studies)	% (studies with Dataset)
SUPPAE	1	0.3	0.3
SUPPCM	4	1.2	1.3
SUPPDM	0	0.0	0.0
SUPPDV	8	2.5	4.2
SUPPEX	3	0.9	1.5
SUPPLB	51	15.7	20.2
SUPPPC	22	6.8	15.8
SUPPVS	0	0.0	0.0

COMMENTS IN SUPPQUALS

TIMING INFORMATION

>1000 SUPPQUAL variables with Timing info

- - Date, Report Date, Randomization Date, etc.

Visit variables

966 unique QNAM with QLABEL which includes text 'date' Date of Best Response, Subject Date of Birth, Data Entry Date, Last Contact

492 unique QNAM with QLABEL which include text 'time' Randomization Time, Time of onset, Time of blood draw, Actual Time, etc. some of these non-standard variables are overlapped with 'date' variables Few of them do not represent Timing info (e.g., Ongoing at Time of Death)

In datasets like SUPPEX, SUPPDV, SUPPCO, SUPPTR, SUPPLB, SUPPPC, etc.

ADDITIONAL RESULTS AND UNITS

- Normal Range information
 - Rare cases
 - Examples:
- or SI units
 - Usually in SUPPLB datasets
 - Examples:

SUPPLB.AGE_HIGH (Normal Range Upper Limit-Age), SUPPEG.EGORNRHI (UPPER NORMAL RANGE VALUE), SUPPLB.SINORMHI (SI upper limit of normal range), SUPPVS.SYSBPHI (Sys BP Normal Range High), etc.

Original, previous or supplemental results in Conventional

SIRESN (SI Numeric Result), CNVRESC (Conventional Text Result), LBORRES4 (Result or Finding in Original Units), LBSTRSCN (Char. Result/Finding in Std Format (N), PSTRESC (Previous Character Result in Std Format), etc.

NOT APPLICABLE INFO IN SUPPDM

QLABEL
Blood Don
6.Highest l
4.Current r
Baseline W
Current en
Day of Dea
Final Study
Did subject
Dose Units
85th Perce

D21

or	
----	--

level of edu?

marital status

Veight g

nployment situation

ath

y Drug Concentration

t meet eligibility criteria?

)

entile BMI (kg/m2)

INVALID SUPPQUAL DATASETS

61 (19%) studies with SUPPSV All information collected on Subject Visit CRF • SUBJID1 (*Subject Identifier 1 for the study*), TVISYN (*Is This a Treatment* Visit?), SVASSESS (Assessments Performed), SVUPDES1 (Description of Unplanned Visit), VISLB (Lab Collection), DOVDTC (Date of Visit), OTHERSP (If Other, specify), etc.

11 (3%) studies with SUPPCO

EXAMPLES OF OTHER VIOLATIONS

- Data management and tracking info Not applicable for regulatory submissions One study with 618 non-standard variables which represent raw data
- collected in EDC
 - SUPPAE.AESERN (Serious Event (N), SUPPAE.AEST_Y (Start Year of Adverse) *Event*), SUPPAE. EPOCHN (*Epoch (N)*) SUPPDM.RACEN (*Race (N)*), etc.
- Only 44% of non-standard variables have a name with prefix corresponding to domain value Like SUPPAE.AETRTEM, SUPPEG.EGCLSIG, SUPPCM.CMATC1, SUPPXY.XYABCDEF

UTILIZATION OF CDISC TAUGS

NON-STANDARD VARIABLES FROM TAUGS

- SDTM NSV Registry' page on CDISC Wiki
 - TAUGS
 - 142 unique variables

Only 24 (17%) of CDISC NSV were found in 324 analyzed studies

Low utilization of existing CDISC TAUG by the industry

• 173 variables used as new non-standard variables across 40+ existing CDISC

CONSISTENCY WITH CDISC

In many cases NSV in SUPPQUALs are not consistent with CDISC

CDISC: --SPEC is 'Specimen Type'

Industry:

- --SPEC NSV was implemented in 24 SUPPQUAL datasets
- It of them have different interpretation of --SPEC variable
 - Other, Specify',
 - Other Symptom'
 - 'AE of Special Interest'
 - 'Disposition Specifications'
 - 'AE Specify'
 - 'Abnormal, Specify'

P21

This study was run as a pilot to understand the potential use of industry metrics for improving standards management practices and to test methodology

SUGGESTIONS FOR ADDITIONAL ANALYSIS

- How consistent is the implementation of SUPPQUAL within each company?
 - We saw both cases
 - Consistent across organization
 - Inconsistent within study
- version of SDTM-IG, Data Fitness Score, etc.?
- Is there any correlation of SUPPQUAL implementation with Implementation of CDISC TAUGs
- Implementation of non-standard domains

HOW CAN WE IMPROVE STANDARDS **MANAGEMENT PRACTICES?**

- Existing standards and regulatory guidance documents are underutilized or ignored
 - AETRTEM, SDTM-IG Appendix C2
 - Additional educational efforts in promotion of data standards and regulatory requirements are expected
- Some information is utilized in almost every study but is not represented by standard SDTM variables yet
 - --CLSIG, WHO Drug coding, MedDRA in PR domain, etc.
- There is still a common practice of misuse and incorrect mapping of collected data into SUPPQUAL datasets Education efforts are expected to promote good SDTM mapping practices New validation rules may also help

CONCLUSION

Collection and analysis of the industry implementation metrics can
Help identify global implementation issues
Help with their eventual resolution

D21

A TAXA DEBUT DE COMPT ANNO 10 COMPT PORTE PORTE 220.25 (33, 17.4 (04774) (500) (100) THE REPORT OF THE PARTY OF THE

N Core and the second second second second second second

1.4 . .

11684

-

B. 10 (8) B. 10

THERE REPORTED FOR THE FILL BASE STOR

Sergiy@Pinnacle21.com

111 111 THE REPORT OF THE PARTY OF THE HS 8. HE TAKEN DEFINITION OF THE PARTY OF THE OWNER OF THE 11) 511 811 811 Man 1 11 Tall Inc. 1.8 100 · 1938 MARKED I TIME. STREET STOP 1 80 B 10 23. B' L'ALTE TH ST. LESS BBB SHERE ------SPARE AND ADDRESS OF TE De 1/ inft HILL ERE TEST IT. I. B. BARRA MINT. . . INTERN Lines H. 10a., 11111 ME INTACT I DESCRIPTION IN THE Lit & BRADE AND A TO AND AND A REAL PROPERTY OF A REAL PROPERTY 1111 ENTERN IS BATTER T BUT 联 嘲 1 100 HE LE DE CONTRACTOR OF A CONTRACT OF A HI III Sale EST PHENELS

민준 변화

The states

